AN ASYMPTOTIC FORMULA OF GELFAND AND GANGOLLI FOR THE SPECTRUM OF $\Gamma \setminus G$

NOLAN R. WALLACH

1. Introduction

In [6], Gelfand outlined a proof of an asymptotic formula for the distribution of multiplicities of spherical principal series in $L^2(\Gamma \backslash G)$, where G is a connected semi-simple Lie group with finite center and Γ is a discrete subgroup of G so that $\Gamma \backslash G$ is compact (see Corollary 1.3 for a formulation of this formula). As pointed out by Gangolli [3] the formula of Gelfand is marginally wrong and the proof of the formula (even in the case G = SL(2, R)) has a gap. In Gangolli [3] a method using the heat equation was used to prove the (corrected) Gelfand formula for G complex semi-simple. Also Gangolli and Warner have in an as yet unpublished manuscript proved the Gelfand formula if Γ has no noncentral elements of finite order. In this paper we use the asymptotic expansion of the fundamental solution of the heat equation to prove a general asymptotic formula which we now describe.

Let G and Γ be as above. Let K be a maximal connected compact subgroup of G. Let \hat{G} (resp. \hat{K}) denote the set of equivalence classes of irreducible unitary representations of G (resp. K). If $\tau \in \hat{K}$, let d_{τ} be the dimension of any element of the class τ . If $\omega \in \hat{G}$, and $\tau \in \hat{K}$, then let $[\tau : \omega|_K]$ denote the multiplicity of τ in ω looked at as a direct sum of irreducible representations of K (i.e., $\omega = \sum [\tau : \omega|_K]\tau$). If $\omega \in \hat{G}$, let λ_{ω} be the value of the Casimir operator of G on any element of the class ω . Let Z(G) be the center of G and let $Z(\Gamma) = Z(G) \cap \Gamma$. Let \hat{K}_{Γ} be the subset of \hat{K} consisting of those τ such that $Z(\Gamma)$ acts trivially on any element of the class τ . Let Π_{Γ} denote the right regular representation of G on $L^2(\Gamma \setminus G)$. Then $\Pi_{\Gamma} = \sum_{\omega \in \hat{G}} n_{\Gamma}(\omega)\omega$, $n_{\Gamma}(\omega) \in Z$, $n_{\Gamma}(\omega) \geq 0$. Our main result is

Theorem 1.1. There is a constant C_G depending only on G so that if $\tau \in \hat{K}_{\Gamma}$ and if $[Z(\Gamma)]$ is the number of elements in $Z(\Gamma)$, then

$$\sum_{\omega \in \widehat{G}} n_{\Gamma}(\omega) [\tau : \omega|_{K}] e^{t\lambda_{\omega}} = C_{G} d_{\tau} \frac{[Z(\Gamma)]}{(4\pi t)^{d/2}} \operatorname{vol}(\Gamma \setminus G) + o(t^{-d/2}) \quad \text{as } t \to 0, \quad t > 0,$$

where vol $(\Gamma \backslash G)$ is the volume of $\Gamma \backslash G$ relative to a fixed choice of Haar

Received June 28, 1974.

measure on G, and $d = \dim G/K = \dim G - \dim K$.

It should be pointed out that if τ is the class of the trivial representation of K, 1, then $[1:\omega|_{K}] = 0$ or 1 for $\omega \in \hat{G}$.

Using the Gärding inequality we give a simple proof of the following result of Gangolli-Warner [5] (for $\tau = 1$), Harish-Chandra (unpublished) in general.

Theorem 1.2. If $\tau \in \hat{K}$, then

$$\sum [\tau : \omega|_{K}] n_{\Gamma}(\omega) (1 + |\lambda_{\omega}|)^{-d/2 - \epsilon} < \infty$$

for all $\varepsilon > 0$, $d = \dim(G/K)$ as before.

Of course, if $\tau \notin \hat{K}_{\Gamma}$ then $[\tau : \omega|_{K}] = 0$ when $n_{\Gamma}(\omega) \neq 0$. Hence Theorem 1.2 has interest only in the case $\tau \in \hat{K}_{\Gamma}$.

The above theorem combined with Theorem 1.1 and a Tauberian argument (see Gangolli [3], [4]) implies the Gelfand conjecture for split rank G equal to one. In this case the result has already been proved by Eaton [1].

2. The equivariant heat equation

Let M be a compact, connected manifold, and let G be a finite group acting effectively on M by diffeomorphisms (that is, if gx = x for all $x \in M$, then g is the identity element of G). We include the following well-known result for completeness.

Lemma 2.1. If $g \in G$, $g \neq e$ (e: the identity of G) and $M_g = \{x \in M \mid gx = x\}$, then M_g has measure zero in M (see the proof for the meaning of this). Proof. Let $\langle \cdot, \cdot \rangle$ be a Riemannian structure on M so that G acts by isometries. Let $p_0 \in M_g$. Let Exp_{p_0} be the exponential map of $(M, \langle \cdot \rangle)$ (see Helgason [8]), and let r > 0 be so small that if $B_{p_0}(r) = \{x \in T(M)_{p_0} | \langle x, x \rangle \langle r^2 \rangle$, then $\operatorname{Exp}_{p_0} : B_{p_0}(r) \to U = \operatorname{Exp}_{p_0}(B_{p_0}(r))$ is a diffeomorphism. If $g \in G - \{e\}$ and $x \in T(M)_{p_0}$, then $g \cdot \operatorname{Exp}_{p_0}(x) = \operatorname{Exp}_{p_0}(g_{*p_0}(x))$ (g_{*p_0} is the differential of the action of g at p_0). Thus, if $\langle x, x \rangle \langle r^2 \rangle$ and $g \cdot \operatorname{Exp}_{p_0}(x) = \operatorname{Exp}_{p_0}(x)$, then $g_{*p_0}(x) = x$. Now g_{*p_0} preserves $\langle \cdot, \cdot \rangle$ at p_0 . Hence, if $V_{p_0} = \{x \in T(M)_{p_0} | g_{*p_0}x = x\}$, then $T(M)_{p_0} = V_{p_0} \oplus V_{p_0}^\perp$ and, by the above, $\operatorname{Exp}_{p_0}(V_{p_0}) = U \cap M_g$. If $V_{p_0} = T(M)_{p_0}$, then $g \cdot \operatorname{Exp}_{0}(x) = \operatorname{Exp}_{0}(x)$ for all $X \in T(M)_{p_0}$. Since $\operatorname{Exp}_{0}(T(M)_{p_0}) = M$, g is the identity, and therefore $\dim V_{p_0} < \dim T(M)_{p_0}$. Thus $\operatorname{Exp}_{p_0}(V_{p_0})$ is a submanifold of U of dimension less than n. Hence $U \cap M_g$ has measure zero relative to any coordinate system. Since M_g can be covered by a finite number of such U, the result follows.

Corollary 2.2. Let $\dot{M} = \{x \in M \mid gx \neq x \text{ for any } g \neq e\}$. Then $M - \dot{M}$ has measure zero in M.

Proof. $M - \mathring{M} = U_{g \neq e} M_g$.

Let $E \xrightarrow{p} M$ be a C^{∞} Hermitian G-vector bundle over M. That is, E is a complex vector bundle over M. If $E_x = p^{-1}(x)$, then there is \langle , \rangle_x an inner product on E_x varying smoothly with x, and G acts on E by diffeomorphisms

such that $gE_x \subset E_{g,x}$ and $g: E_x \to E_{g,x}$ is a linear isometry of the fibres.

Let $C^{\infty}(M; E)$ denote the space of C^{∞} cross-sections of E, and let $(g \cdot f)(x) = gf(g^{-1}x)$ for $g \in G$, $f \in C^{\infty}(M, E)$. Suppose that there is an elliptic operator $D: C^{\infty}(M; E) \to C^{\infty}(M; E)$ so that the following hold:

- (1) $D(g \cdot f) = g \cdot (Df)$.
- (2) If $\xi \in T(M)_x^*$, then $\sigma(D)(\xi) = -\langle \xi \xi \rangle I$, where $T(M)^*$ is the cotangent bundle of M, and $\sigma(D)$ is the top order symbol of D, and \langle , \rangle is a Riemannian structure on M.
- (3) If μ_0 is the Riemannian measure on M corresponding to \langle , \rangle , then for $f_i \in C^{\infty}(M; E)$, i = 1, 2, defining $\int_{M} \langle f_1(x), f_2(x) \rangle d\mu_0(x) = (f_1, f_2)$ we assume $(Df_1, f_2) = (f_1, Df_2)$ and $(Df, f) \geq 0$ for $f \in C^{\infty}(M; E)$.

Actually results similar to the ones we shall derive are true under very much less stringent conditions than (1), (2), (3).

Let $\tilde{E} \to R \times M$ be the pull-back bundle $p_2^*E = \{(t, v) | t \in R, v \in E\}$, $I \times p : p_2^*E \to R \times M$ the projection, and $L = \partial/\partial t + D$ the evolution operator associated with D.

Let $C^{\infty}(M; E)_{\lambda} = \{ f \in C^{\infty}(M; E) | Df = \lambda f \}$ for $x \in \mathbb{R}$. If $C^{\infty}(M; E)_{\lambda} \neq (0)$, $\lambda \in \mathbb{R}$, then $\lambda \geq 0$. Gärding's inequality (see Palais et. al. [10], F. Warner [3] or Greenfield and Wallach [7]) implies

Lemma 2.3. $\sum_{\lambda\neq 0} \dim C^{\infty}(M; E)_{\lambda} \lambda^{-d/2-\epsilon} < \infty \text{ for all } \epsilon > 0, d = \dim M.$ If $\phi, f, g \in C^{\infty}(M; E)$, then define

$$\int_{M} (f \, \hat{\otimes} \, g)(x, y) \phi(y) dy = \int_{M} \langle g(y), \phi(y) \rangle d\mu_{0}(y) f(x) \ .$$

Let $E \, \hat{\otimes} \, E \to M \times M$ be the exterior tensor product of E with itself. If $h \in C^{\infty}(E \, \hat{\otimes} \, E)$, then $\int_{M} h(x, y) \phi(y) d\mu_{0}(y)$ makes sense for $\phi \in C^{\infty}(E)$.

For $\lambda \in R$ and $\lambda \geq 0$, let $\phi_{\lambda,1}, \dots, \phi_{\lambda,n_{\lambda}}$ be an orthonormal basis of $C^{\infty}(M; E)_{\lambda}$ (dim $C^{\infty}(M; E)_{\lambda} = n_{\lambda} < \infty$ by the elliptic regularity theorem). Then Lemma 2.3 implies that

$$\sum_{\lambda} e^{-\lambda t} \left(\sum_{i=1}^{n_{\lambda}} \phi_{\lambda,i}(x) \, \hat{\otimes} \, \phi_{\lambda,i}(y) \right) = K(t,x,y)$$

defines a C^{∞} cross-section of

$$P_2^*(E \mathbin{\hat{\otimes}} E)|_{(0,\infty)\times M\times M}, \qquad (P_2(t,x,y)=(x,y)).$$

It is well known and easily proved that if $\phi \in C^{\infty}(M; E)$, then the unique solution to the Cauchy problem:

- (i) Lf = 0,
- (ii) $\lim_{\substack{t \to 0 \\ t > 0}} f(t, x) = \phi(x)$

is given by

$$f(t,x) = \int_{W} K(t,x,y)\phi(y)d\mu_0(y) .$$

Set $I_G^{\infty}(E)$ equal to the space of all $f \in C^{\infty}(M; E)$ such that $g \cdot f = f$ for $g \in G$. If $\phi \in I_G^{\infty}(E)$, then the uniqueness above implies that if Lf = 0 and $\lim_{t \to 0} f(t, x) = \lim_{t \to 0} f(t, x) = \lim_{t \to 0} f(t, x)$

 $\phi(x)$, then $g \cdot f(t, g^{-1} \cdot x) = f(t, x)$ for $g \in G$.

Let $C^{\infty}(M; E)^{0}_{\lambda} = C^{\infty}(M; E)_{\lambda} \cap I^{\infty}_{G}(E)$. Then we may assume that $\phi_{\lambda,1}, \dots, \phi_{\lambda,m_{\lambda}}$ form an orthonormal basis of $C^{\infty}(M; E)^{0}_{\lambda}$. Let

$$K_G(t,x,y) = \sum_{\lambda} e^{-\lambda t} \sum_{i=1}^{m_{\lambda}} \phi_{\lambda,i}(x) \, \hat{\otimes} \, \phi_{\lambda,i}(y) \; .$$

Let $(g \cdot f)(t, x) = gf(t, g^{-1} \cdot x)$ for $f \in C^{\infty}(\mathbb{R} \times M; \tilde{E})$ and $g \in G$. Let $I_G^{\infty}(\tilde{E})$ be the f in $C^{\infty}((0, \infty) \times M; \tilde{E})$ such that $g \cdot f = f$ for $g \in G$.

Clearly, if
$$(K(t)\phi)(x) = \int_M K(t, x, y)\phi(y)dy$$
, $t > 0$, then $K(t): I_G^\infty(E) \to I_G^\infty(\tilde{E})$.

If
$$(K_G(t)\phi) = \int_{\mathbb{R}} K_G(t,x,y)\phi(y)dy$$
 for $t > 0$, then $K_G(t) : C^{\infty}(M;E) \to I_G^{\infty}(\tilde{E})$.

If $v \in E_x$ and $w \in E_y$, then set $(g \otimes 1)(v \otimes w) = gv \otimes w$, $(1 \otimes g)(v \otimes w) = v \otimes gw$. $(g \otimes h)(v \otimes w) = gv \otimes hw$, $g, h \in G$. Hence $G \times G$ acts on $E \otimes E$. Clearly

$$K_G(t, x, y) = \frac{1}{[G]} \sum_{g \in G} (g \otimes 1) K(t, g^{-1}x, y) ,$$

where [G] is the number of elements in G.

We also look at $x \to K(t, x, x)$ and $x \to K_G(t, x, x)$ as a C^{∞} cross-section of Hom (E, E). Let I be the identity cross-section. The next result is classical, so we will only sketch its proof.

Lemma 2.4. (a) $K(t, x, x) = (4\pi t)^{-d/2} I_x + O(t^{-(d-1)/2})$ as $t \to 0$, t > 0.

(b) Let ρ be the Riemannian metric corresponding to \langle , \rangle on M. Then there are constants C > 0, h > 0 so that

$$||K(t, x, y)|| \le Ct^{-d/2} \exp(-h\rho(x, y)^2/t)$$
.

Here the norm is relative to the tensor product Hermitian structure on $E \hat{\otimes} E$. Proof (outline). Let $\varepsilon > 0$ be such that

- (a) $\operatorname{Exp}_p: B_p(\varepsilon) \to B(p; \varepsilon) = \{x \in M \mid \rho(x, p) < \varepsilon\}$ is a diffeomorphism for $p \in M$.
 - (b) $E|_{B(p;\epsilon)}$ is a trivial bundle for $p \in M$.

Let $p_1, \dots, p_N \in M$ be such that if $U_i = B(p_i; \varepsilon/2)$, $U_1 \cup \dots \cup U_N = M$. Let $W_i = B(p_i; \varepsilon)$. Let $\{x_1^i, \dots, x_d^i\}$ be a corresponding system of normal coordinates on W_i , and $\Psi_i = (x_1^i, \dots, x_d^i)$ the corresponding chart $(\Psi_i(W_i) = \{(x_1, \dots, x_d) \mid \sum x_i^2 < \varepsilon^2\})$. Let $\Psi_i : E|_{W_i} \to W_i \times C^m$ be a vector bundle isomorphism, and let ϕ_1, \dots, ϕ_N be a partition of unity for M, supp $\phi_i \subset U_i$. Let $\xi_i \in C^{\infty}(M)$, $0 \le \xi_i(x) \le 1$, $x \in M$, supp $\xi_i \subset U_i$, $\xi_i(x) = 1$ for $x \in \text{supp } \phi_i$. If $f \in C^{\infty}(M; E)$, then $F_i = \Psi \circ f \circ \Psi_i^{-1} : \Psi_i(W_i) \to \Psi_i(W_i) \times C^m$, $F_i(x) = (x, f_i(x))$. $\Psi_i \circ Df \circ \Psi_i^{-1} = (x, D_i f_i(x))$ where

$$D_i = -\textstyle\sum a^i_{{\scriptscriptstyle k}{\scriptscriptstyle l}} \frac{\partial^2}{\partial x_k \partial x_{\scriptscriptstyle l}} + \textstyle\sum b^i_k \frac{\partial}{\partial x_k} + C^i \; ,$$

where $(a_{kl}^i(x))$ is a positive definite matrix $b_k^i, C^i \in C^{\infty}(\Psi_i(W_i), \operatorname{End}(C^n))$. Let $(a^{i,kl}(x)) = (a_{kl}^i(x))^{-1}$, and set

$$Z_{i}(t, x, y) = (4\pi t)^{-d/2} \exp\left(-\frac{1}{4t} \sum_{k,l} a^{i,k,l}(y)(x_{k} - y_{k})(x_{l} - y_{l})\right)$$

for t > 0.

Define for $f \in C^{\infty}(M; E)$,

$$(Z(t)f)(x) = \sum_{i=1}^N \xi_i(x) \Psi_i^{-1} \left(x, \int_{V_i} \phi_i(y) Z_i(t, \Psi_i(x), \Psi_i(y)) f_i(y) d\mu_0(y) \right).$$

Then it is easily seen (see Friedman [2, Theorem 1, p. 4]) that

$$\lim_{\substack{t \to 0 \\ t > 0}} (Z(t)f)(x) = f(x)$$

for $x \in M$. It is also clear that Z(t) has a C^{∞} kernel Z(t, x, y). That is, $(Z(t)f)(x) = \int_{M} Z(t, x, y)f(y)d\mu_{0}(y)$ where $Z(t, x, y) \in E_{x} \hat{\otimes} E_{y}$.

If $f \in C^{\infty}((0, \infty) \times M; \tilde{E})$, $g \in C^{\infty}(M; E)$ define $L(f \hat{\otimes} g) = Lf \hat{\otimes} g$. Arguing as in Friedman [2, Chapter 1, § 4] we define

$$\Phi_1(t, x, y) = -LZ(t, x, y) .$$

Supposing that Φ , has been defined, set

$$\Phi_{\nu+1}(t,x,y) = -\int_0^t \int_{\mathcal{M}} LZ(t\sigma,x,\xi)\Phi_{\nu}(\sigma,\xi,y)d\mu_0(\xi)d\sigma.$$

Then the above arguments of Friedman imply that if $\Phi(t, x, y) = \sum_{\nu=1}^{\infty} \Phi_{\nu}(t, x, y)$, then Φ converges uniformly and absolutely on compact subsets of $(0, \infty) \times M \times M$ to a C^{∞} cross-section of $C^{\infty}((0, \infty) \times M \times M; P_2^*(E \hat{\otimes} E))$. Furthermore we have that there are C > 0, h > 0 so that

(a)
$$||Z(t, x, y)|| \le Ct^{-d/2} \exp\left(-\frac{h}{t}\rho(x, y)^2\right)$$
,

(b)
$$\|\Phi(t, x, y)\| \le Ct^{-(d+1)/2} \exp\left(-\frac{h}{t}\rho(x, y)^2\right)$$
,

(c)
$$||LZ(t, x, y)|| \le Ct^{-(d+1)/2} \exp\left(-\frac{h}{t}\rho(x, y)^2\right)$$

for $0 < t \le T < \infty, x, y \in M$.

Also arguing as in [2, Theorem 8, p. 19] we see

$$K(t,x,y) = Z(t,x,y) + \int_0^t \int_M Z(t-\sigma,x,\xi) \Phi(\sigma,\xi,y) d\mu_0(\xi) d\sigma.$$

Using [2, Lemma 3, p. 15] we see that if

$$V(t,x,y) = \int_0^t \int_{\mathcal{M}} Z(t-\sigma,x,\xi) \Phi(\sigma,\xi,y) d\mu_0(\xi) d\sigma ,$$

then

$$||V(t, x, y)|| \le Ct^{-(d+1)/2} \exp\left(-\frac{h}{t}\rho(x, y)^2\right)$$

for $0 < t \le T$.

The lemma now follows from the fact that Z(t, x, y) obviously satisfies (1), (2) of the lemma.

Lemma 2.5. Let for $\lambda \in \mathbb{R}$, $m_{\lambda} = \dim C^{\infty}(M; E)_{\lambda}^{0} = \dim \{f \in C^{\infty}(M; E) \mid Df = \lambda f, g \cdot f = f \text{ for all } g \in G\}$. Let vol $(M) = \int_{M} d\mu_{0}(x)$. Let m be the fibre dimension of E. If $d = \dim M$, then

$$\sum_{\lambda} m_{\lambda} e^{-\lambda t} = \frac{m}{[G]} \frac{\text{vol}(M)}{(4\pi t)^{d/2}} + o(t^{-d/2})$$

as $t \to 0$, t > 0.

Proof. If $f, g \in C^{\infty}(M; E)$, define $\operatorname{tr}(f(x) \otimes g(x)) = \langle f(x), g(x) \rangle$. Then clearly

$$\sum_{i} m_{i}e^{-\lambda t} = \int_{M} \operatorname{tr} \left(K_{G}(t, x, x)\right) d\mu_{0}(x) .$$

Now

$$K_G(t,x,y) = \frac{1}{[G]}K(t,x,y) + \frac{1}{[G]}\sum_{g\neq e}(g\otimes 1)\cdot K(t,g^{-1}\cdot x,y)$$
.

Thus Lemma 2.4 will imply the lemma if we can show that if $g \neq e$ then

$$\int_{M} \|(g \otimes 1)K(t, g^{-1}x, x)\| d\mu_0(x) = o(t^{-d/2})$$

as $t \to 0$, t > 0.

Let now $g \in G - \{e\}$ be fixed and $\varepsilon > 0$ be given. Let U be open in M so that $U \supset M_{g-1}$ (see Lemma 2.1) and $\int_U d\mu_0(x) < \frac{1}{2}\varepsilon \ CV$, C and V to be determined. Let

$$J(t) = \int_{M} \|(g \otimes 1)K(t, g^{-1}x, x)\| d\mu_{0}(x) = \int_{M} \|K(t, g^{-1}x, x)\| d\mu_{0}(x) .$$

Then

$$J(t) = \int_{M-U} \|K(t, g^{-1}x, x)\| d\mu_0(x) + \int_{U} \|K(t, g^{-1}x, x)\| d\mu_0(x) .$$

Now

$$||K(t, g^{-1}x, x)|| \le Ct^{-d/2} \exp\left(-\frac{h}{t}\rho(g^{-1}x, x)\right) \le Ct^{-d/2}V,$$

$$V = \max_{\substack{x,y \in M \\ t \in S}} \exp\left(-\frac{h}{t}\rho(x, y)\right).$$

Thus

$$t^{d/2}J(t) \leq \int_{M-D} ||K(t,g^{-1}x,x)|| d\mu_0(x) + \frac{1}{2}\varepsilon.$$

Now M-U is compact and $M-U\subset M-M_{g^{-1}}$. Hence there is $\delta>0$ so that if $x\in M-U$ then $\rho(g^{-1}x,x)\geq \delta$. Applying Lemma 2.4 again we find that $t^{d/2}J(t)\leq \frac{1}{2}\varepsilon+C \text{ vol }(M)e^{-\delta^2\hbar/t}$ if $t\leq 1$. Take $\mu>0$ so that $e^{-\delta^2\hbar/t}<\frac{1}{2}\varepsilon C \text{ vol }(M)$ if $0< t<\mu$. Then $t^{d/2}J(t)<\varepsilon$ for $0< t<\mu$. q.e.d.

In the next section we apply these results to $\Gamma \backslash G$.

3. Applications to $\Gamma \backslash G$

Let G be a semi-simple Lie group with finite center and such that G has no connected, compact, normal subgroups. Let $K \subset G$ be a maximal connected, compact subgroup. Let X = G/K. Let \mathfrak{g} be the Lie algebra of G, and G the Killing form of G. Let $\mathfrak{f} \subset G$ be the Lie algebra of G, and G the orthogonal compliment to G in relative to G. Then it is well known that $G \mid_{\mathfrak{p} \times \mathfrak{p}}$ is positive definite. We put the G-invariant Riemannian structure $G : G \to G/K$ is the natural map, and $G : G \to G/K$ is the natural map, and $G : G \to G/K$ is its differential at $G : G \to G/K$ an isometry of $G : G \to G/K$.

Let now (τ, V) be an irreducible unitary representation of K. We form the G-hermitian vector bundle over $X, G \underset{\mathbb{R}^{|V|}}{\times} (V \otimes V^*) = V$ where $G \underset{\mathbb{R}^{|V|}}{\times} (V \otimes V^*)$

is the associated bundle to the principal bundle $K \to G \xrightarrow{\Pi} X$ (cf. Kobayashi-Nomizu [9] or Wallach [12]). Then V is completely described as follows:

- (1) If g is in G, then g induces a linear map $V_x \to V_{gx}$ which we denote $v \to g \cdot v$. The corresponding action of G on V is C^{∞} .
- (2) The representation of K on V_{ek} given by $v \to k \cdot v$, $v \in V_{ek}$, is equivalent to $(\tau \otimes I, V \otimes V^*)$ as a unitary representation.

If $f \in C^{\infty}(X; V)$, let $(g \cdot f)(x) = gf(g^{-1} \cdot x)$. Then $g \cdot f \in C^{\infty}(X; V)$ for $f \in C^{\infty}(X; V)$. Let X_1, \dots, X_n be a basis of \mathfrak{g} , and let Y_1, \dots, Y_n be such that $B(X_i, Y_j) = \delta_{ij}$. Then defining $(X \cdot f)(x) = \frac{d}{dt}(\exp tX \cdot f(\exp (-tX) \cdot x)|_{t=0})$ for

 $X \in \mathfrak{g}$ and $f \in C^{\infty}(X; V)$ we set

$$\Omega_{v}f = \sum_{i=1}^{n} X_{i}Y_{i} \cdot f.$$

Thus $\Omega_{\mathbf{v}}g \cdot f = g\Omega_{\mathbf{v}}f, g \in G$.

A simple computation shows that if $\xi \in T(X)^*_{ek}$, then $\sigma(\Omega_V)(\xi) = \langle \xi, \xi \rangle I$. Define a G-invariant connection on V by $(V_u f)(ek) = (X \cdot f)(ek)$ for $u \in T(G/K)_{ek}$, $u = \Pi_{*e}(X)$, $X \in \mathfrak{p}$. The corresponding connection on V satisfies

$$X \cdot \langle \Psi, \eta \rangle = \langle \nabla_X \Psi, \eta \rangle + \langle \Psi, \nabla_X \eta \rangle.$$

Let $abla^2$ be the connection Laplacian on V corresponding to the connection abla and the Riemannian structure on X.

Lemma 3.1. Let $\Omega_K = -\sum Y_i^2$ where Y_1, \dots, Y_k form a basis of \mathfrak{f} so that $B(Y_i, Y_j) = -\delta_{ij}$. Let λ_i be defined by $\tau(\Omega_K) = \lambda_i I$ (Schur's lemma implies this makes sense). If $f \in C^{\infty}(X; V)$, then

$$\Omega_{\mathbf{v}}f = \nabla^2 f + \lambda_{\mathbf{v}}f.$$

Proof. If $f \in C^{\infty}(X; V)$, define $\tilde{f}(g) = g^{-1} \cdot f(gk)$. Then $\tilde{f}: G \to V_{ek}$ and $\tilde{f}(gk) = k^{-1}\tilde{f}(g)$ for $k \in K$, $g \in G$. Let $(L_g\phi)(x) = \phi(g^{-1}x)$ for $\phi: G \to V_{ek}$, where ϕ is of class C^{∞} , and $g, x \in G$. We note that if $A(f) = \tilde{f}$ for $f \in C^{\infty}(X; V)$ and we define $B(\phi)(gk) = g \cdot \phi(g)$ for $\phi: G \to V_{ek}$, then $\phi(gk) = k^{-1} \cdot \phi(g)$, $k \in K$, $g \in G$. Thus $B(\phi) \in C^{\infty}(X; V)$ and $AB(\phi) = \phi$, BA(f) = f.

Let $(R_X\phi)(g) = \frac{d}{dt}\phi(gexptX)|_{t=0}$ for $X \in g$ and $\phi: G \to V_{ek}$, ϕ being of class

 C^{∞} . Then a direct computation shows that if X_1, \dots, X_p form an orthonormal basis of p relative to $B|_{p \times p}$, then $A(\overline{V}^2 f) = \sum_{i=1}^p R_{X_i}^2 A(f)$. Also

$$\begin{split} A(\mathcal{Q}_{V}f) &= \sum_{i=1}^{p} R_{X_{i}}^{2} A(f) - \sum_{i=1}^{p} R_{X_{i}}^{2} A(f) \\ &= \sum_{i=1}^{p} R_{X_{i}}^{2} A(f) + \tau(\mathcal{Q}_{K})(A(f)) = A(\mathcal{V}^{2}f) + \lambda_{\tau} A(f) \; . \end{split}$$

Applying B gives the result.

Let now $\Gamma \subset G$ be a discrete subgroup so that $\Gamma \backslash G$ is compact and $g\Gamma g^{-1} \cap K = \{e\}$ for all $g \in G$. Then Γ acts freely and properly discontinuously on X and V. We may thus form $E = \Gamma \backslash V \to \Gamma \backslash X = M$.

Since Γ acts by isometries on X, we may "push" the Riemannian structure and volume element on X down to M. The Hermitian structure on V induces a Hermitian structure on E. Finally Ω_V and V^2 are G-invariant operators on V, and thus the induced second order elliptic operators on E. We still have $\Omega_V = V^2 + \lambda I$.

Set $D = -(\Omega_V - \lambda I) = -V^2$. Then $(Df, f) \ge 0$, $D = D^*$ and $\sigma(D, \xi) = -\langle \xi, \xi \rangle I$. Thus D satisfies (1), (2), (3) of § 2.

Let f(g)(k) = f(gk) for $f \in C^{\infty}(\Gamma \setminus G)$. Then $f : \Gamma \setminus G \to C^{\infty}(K)$. Let $C^{\infty}_{\tau}(K)$ be the subspace of $C^{\infty}(K)$ spanned by the matrix entries of (τ, V) . Let χ_{τ} be the character of (τ, V) . Define $f_{\tau}(g) = \int_{K} \chi_{\tau}(e) \overline{\chi_{\tau}(k)} f(gk) dk$ for $f \in C^{\infty}(\Gamma \setminus G)$. Then $f_{\tau} : \Gamma \setminus G \to C^{\infty}_{\tau}(K)$ and $f_{\tau}(gu)(k) = f_{\tau}(g)(uk)$. Let $C^{\infty}_{\tau}(\Gamma \setminus G) = \{f \in C^{\infty}(\Gamma \setminus G) | f_{\tau} = f\}$. Let $(\mu(k)\phi)(x) = \phi(k^{-1}x)$ for $\phi \in C^{\infty}_{\tau}(K)$, and $k, x \in K$. We therefore see that if $f \in C^{\infty}_{\tau}(\Gamma \setminus G)$, then $f : \Gamma \setminus G \to C^{\infty}_{\tau}(K)$ and $f(gu) = \mu(u)^{-1}f(x)$ for $x, u \in K$.

Let Π_{Γ} be the right regular representation of G on $L^2(\Gamma \setminus G)$. That is, if $\phi \in L^2(\Gamma \setminus G)$ then $(\pi_{\Gamma}(x)\phi)(\Gamma g) = \phi(\Gamma gx)$ for $g, x \in G$. Then it is well known that $\pi_{\Gamma} = \sum_{\omega \in G} n_{\Gamma}(\omega)\omega$. \hat{G} is the set of all equivalence classes of irreducible unitary representations of G.

If $\lambda \in R$, let $\hat{G}_{\lambda} = \{\omega \in G \mid \pi_{\omega}(\Omega) = -\lambda I \text{ for every } \pi_{\omega} \text{ in the class } \omega\}$. **Lemma 3.2.** Set $C^{\infty}(M; E)_{\lambda} = \{\phi \in C^{\infty}(M; E) \mid D\phi = \lambda \phi\}$. Then

$$\dim C^{\scriptscriptstyle\infty}(M\,;\,E)_{\scriptscriptstyle\lambda} = \sum_{\scriptscriptstyle\omega\,\in\,\widehat{G}_{\scriptscriptstyle\lambda-\lambda_{\scriptscriptstyle\tau}}} n_{\scriptscriptstyle\Gamma}(\omega)\cdot [\tau\,\colon\omega\,|_{\scriptscriptstyle K}] d_{\scriptscriptstyle\tau} \;,$$

 $d_{\tau} = \dim V = \chi_{\tau}(e).$

Proof. E can be looked upon as the set of equivalence classes of pairs $(x,v), x\in \Gamma\setminus G, v\in V\otimes V^*$ with $(xk,(\tau(k)\otimes I)^{-1}v)\equiv (x,v)$ for $k\in K$. Let [x,v] denote the equivalence class of (x,v). Let $C^\infty(\Gamma\setminus G;\tau)$ denote the space of all $\phi:\Gamma\setminus G\to V\otimes V^*$, $\phi\in C^\infty$ and $\phi(xk)=(\tau(k)^{-1}\otimes I)\phi(x)$. Define $B(\phi)(x)=[x,\phi(x)]$ for $\phi\in C^\infty(\Gamma\setminus G;\tau)$. Then B defines a bijection of $C^\infty(\Gamma\setminus G;\tau)$ and $C^\infty(M;E)$. Now as a representation of $K,(\mu,C^\infty_\tau(K))$ is equivalent to $(\tau\otimes I,V\otimes V^*)$. Thus we have $B^{-1}\colon C^\infty(M;E)\to C^\infty_\tau(\Gamma\setminus G)$. B^{-1} is bijective and extends to a bounded bijective operator on the appropriate L^2 -completions. But then $B^{-1}(C^\infty_\tau(M;E)_x)=\{f\in C^\infty_\tau(\Gamma\setminus G)|\Omega f=-(\lambda-\lambda_x)f\}$. If $f\in C^\infty_\tau(\Gamma\setminus G)$, then $f=\sum f_\omega, f_\omega\in n_\Gamma(\omega)H_\omega, (\pi_\omega,H_\omega)\in\omega$. Thus $\Omega f=\sum \lambda_\omega f_\omega$, and the result now follows.

Suppose now that $\Gamma_1 \subset G$ is an arbitrary discrete subgroup so that $\Gamma_1 \backslash G$ is compact. Then there is a normal subgroup Γ of Γ_1 so that Γ acts freely and properly discontinuously on X, and if $H = \Gamma_1 \backslash \Gamma$ then H is a finite group of isometries of $\Gamma \backslash X$ (cf. Raghunathan [11]).

Now $E \to M = \Gamma \setminus X$ is an H-vector bundle, since E is the associated bundle to $\Gamma \setminus G \to \Gamma \setminus X$ and H acts on the left on $\Gamma \setminus G$. Let $Z(\Gamma_1) = \Gamma_1 \cap Z(G)$, where Z(G) is the center of G. We note that since $Z(G) \subset K$, $Z(\Gamma_1) \subset K$. Also, if $z \in Z(G)$ then $\tau(z) = \xi_{\tau}(z)I$, $\xi_{\tau} \colon Z(G) \to T^1$ being a character. Thus, if $\gamma \in Z(\Gamma_1)$ and $h = \gamma \Gamma$, then $h \cdot v = \xi_{\tau}(\gamma)v$ for $v \in E$. We therefore see that $C^{\infty}(M; E)_0^{\circ} = \{f \in C^{\infty}(M; E)_{\lambda} \mid h \cdot f = f, h \in H\} \neq 0$ only if $\tau|_{Z(\Gamma_1)} = I$.

We assume that $\tau|_{Z(\Gamma_1)} = I$. Arguing as above we find

Lemma 3.3. dim $C^{\infty}(M; E)^{0}_{\lambda} = \sum_{\omega \in \widehat{G}_{\lambda - \lambda_{\tau}}} n_{\Gamma_{1}}(\omega) [\tau : \omega|_{K}] d_{\tau}$, where $\Pi_{\Gamma_{1}} = \sum n_{\Gamma_{1}}(\omega)\omega$, and $\Pi_{\Gamma_{1}}$ is the right regular representation of G on $L^{2}(\Gamma_{1}\backslash G)$.

Now H does not necessarily act effectively on $\Gamma \setminus X$. Let $H_0 = \{h \in H \mid h\Gamma x = \Gamma x \text{ for all } x \in X\}$. Then, as is easily seen, H_0 is the image of $Z(\Gamma_1)$ in H. Since $Z(\Gamma_1) \cap \Gamma = (e)$, we see that $[H_0] = [Z(\Gamma_1)]$. Finally E is an H/H_0 vector bundle if and only if H_0 acts trivially on the fibres of E, that is, if and only if $\tau \in \hat{K}_{\Gamma_1}$ (see the introduction for the definition of \hat{K}_{Γ_2}).

Combining the above observations with Lemma 3.3 and Lemma 2.5 we see

(1)
$$e^{\lambda_{\tau}t} \sum_{\omega \in \widehat{G}} e^{\lambda_{\omega}t} n_{\Gamma_{1}}(\omega) d_{\tau}[\tau : \omega|_{K}] = \frac{[Z(\Gamma_{1})]}{[\Gamma_{1} \backslash \Gamma]} t^{-d/2} \operatorname{vol}(M) d_{\tau}^{2} + o(t^{-d/2}) \quad \text{as } t \to 0, \quad t > 0.$$

Normalize Haar measure dg on G so that if X_1, \dots, X_n form a basis of g so that $-B(X_i, \theta X_j) = \delta_{ij} (\theta|_t = I, \theta|_p = -I)$, then $dg(X_1, \dots, X_n) = 1$. Let C_G^{-1} be the volume of K relative to the Riemannian volume element on K corresponding to the inner product $-B|_{t \times t}$. Then

$$\operatorname{vol}(\Gamma_1 \backslash G) = [\Gamma_1 / \Gamma]^{-1} \cdot \operatorname{vol}(\Gamma \backslash G) = [\Gamma_1 / \Gamma]^{-1} C_G^{-1} \operatorname{vol}(\Gamma \backslash X).$$

Hence C_G vol $(\Gamma_1 \backslash G) = [\Gamma_1 / \Gamma]^{-1} \cdot \text{vol } (\Gamma \backslash X)$. These observations combined with (1) above prove

Theorem 3.4. There is a constant C_G depending only on G so that if Γ is a discrete subgroup of G with $\Gamma \setminus G$ compact and if $\tau \in \hat{K}_{\Gamma}$, then

$$\sum_{\omega \in \widehat{G}} n_{\Gamma}(\omega) [\pi : \omega|_{K}] e^{t\lambda \omega} = C_{G} d_{\tau} \frac{[Z(\Gamma)]}{(4\pi t)^{d/2}} \operatorname{vol} (\Gamma \setminus G) + o(t^{-d/2}) ,$$

$$as \ t \to 0 , \quad t > 0 .$$

We also note that Lemma 2.3 combined with Lemmas 3.2 and 3.3 immediately imply Theorem 1.2 of the introduction.

References

[1] T. Eaton, Thesis, University of Washington, Seattle, 1973.

[2] A. Friedman, Partial differential equations of parabolic type, Prentice-Hall, Englewood Cliffs, New Jersey, 1964.

- [3] R. Gangolli, Asymptotic behavior of spectra of compact quotients of certain symmetric spaces, Acta. Math. 121 (1968) 151-192.
- [4] —, Spectra of discrete subgroups, Proc. Sympos. Pure Math. Vol. 26, Amer. Math. Soc., 1973, 431–436.
- [5] R. Gangolli & G. Warner, On Selberg's trace formula, Japan. J. Math., to appear.
- [6] I. M. Gelfand, Automorphic forms and the theory of representations, Proc. Internal. Conf. Math. (Stockholm, 1962), Inst. Mittag-Leffler, Djursholm, 1963, 74-85.
- [7] S. Greenfield & N. R. Wallach, Remarks on global hypoellipticity, Trans. Amer. Math. Soc. 183 (1973) 153-164.
- [8] S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York, 1962.
- [9] S. Kobayashi & K. Nomizu, Foundations of differential geometry. I, Interscience, New York, 1962.
- [10] R. Palais et al., Seminar on the Atiyah-Singer index theorem, Annals of Math. Studies, No. 57, Princeton University Press, Princeton, 1965.
- [11] M. Raghunathan, Discrete subgroups of Lie groups, Springer, Berlin, 1972.
- [12] N. Wallach, Harmonic analysis on homogeneous spaces, Marcel Dekker, New York, 1973.
- [13] F. Warner, Foundations of differential geometry and Lie groups, Scott, Foresman and Co., Glenview, Illinois, 1971.

RUTGERS UNIVERSITY