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AN ASYMPTOTIC FORMULA OF GELFAND
AND GANGOLLI FOR THE SPECTRUM OF I'\G

NOLAN R. WALLACH

1. Introduction

In [6], Gelfand outlined a proof of an asymptotic formula for the distribu-
tion of multiplicities of spherical principal series in L*(/"\G), where G is a
connected semi-simple Lie group with finite center and [ is a discrete sub-
group of G so that ['\G is compact (see Corollary 1.3 for a formulation of
this formula). As pointed out by Gangolli [3] the formula of Gelfand is mar-
ginally wrong and the proof of the formula (even in the case G = SL(2, R))
has a gap. In Gangolli [3] a method using the heat equation was used to prove
the (corrected) Gelfand formula for G complex semi-simple. Also Gangolli
and Warner have in an as yet unpublished manuscript proved the Gelfand for-
mula if /" has no noncentral elements of finite order. In this paper we use the
asymptotic expansion of the fundamental solution of the heat equation to prove
a general asymptotic formula which we now describe.

Let G and I be as above. Let K be a maximal connected compact subgroup
of G. Let G (resp. K) denote the set of equivalence classes of irreducible unita-
ry representations of G (resp. K). If € K, let d. be the dimension of any ele-
ment of the class . If we G, and r ¢ K, then let [r: ] denote the multi-
plicity of 7 in w looked at as a direct sum of irreducible representations of X
(.., o = 3 [r: 0g]0). If w e G, let 2, be the value of the Casimir operator
of G on any element of the class w. Let Z(G) be the center of G and let Z(I")
=ZG) NTI. Let kR - be the subset of R consisting of those z such that Z(I")
acts trivially on any element of the class -. Let /7, denote the right regular
representation of G on L¥I'\G). Then I, = 7.2 nr(wo, nr(w) € Z,
n-(w) > 0. Our main result is

Theorem 1.1. There is a constant C depending only on G so thatif v € K r
and if [Z(I")] is the number of elements in Z(I"), then

5] np@e: olglet = Cod, LI vo1 (1\6)

oel B (47ft)d/2

-+ o(r7%) ast—0, t>0,

where vol (I'\G) is the volume of ['\G relative to a fixed choice of Haar

Received June 28, 1974.



92 NOLAN R. WALLACH

measure on G, and d = dim G/K = dim G — dim K.

It should be pointed out that if ¢ is the class of the trivial representation of
K,1,then[l:wjzx] =0or 1l forwe G.

Using the Girding inequality we give a simple proof of the following result
of Gangolli-Warner [5] (for - = 1), Harish-Chandra (unpublished) in general.

Theorem 1.2. If r ¢ K, then

3 le: wlglng(@)(1 + 2,7 < o

for all ¢ > 0, d = dim (G/K) as before.

Of course, if ¢ K r then [z: w|xz] = O when n(w) # 0. Hence Theorem
1.2 has interest only in the case z € K.

The above theorem combined with Theorem 1.1 and a Tauberian argument
(see Gangolli [3], [4]) implies the Gelfand conjecture for split rank G equal
to one. In this case the result has already been proved by Eaton [1].

2. The equivariant heat equation

Let M be a compact, connected manifold, and let G be a finite group acting
effectively on M by diffeomorphisms (that is, if gx = x for all x ¢ M, then g
is the identity element of G). We include the following well-known result for
completeness.

Lemma 2.1. If ge G, g + e (e: the identity of G) and M, = {x e M |gx
= x}, then M, has measure zero in M (see the proof for the meaning of this).

Proof. Let { , > be a Riemannian structure on M so that G acts by iso-
metries. Let p, e M,. Let Exp,, be the exponential map of (M,{ ) (see
Helgason [8]), and let » > O be so small that if B, (r) = {x e T(M),,|{x, x>{r*},
then Exp,,: By, (r) — U = Exp, (B,,(r) is a diffeomorphism. If ge G — {¢}
and x € T(M),,, then g - Exp, (x) = Exp,(2.p,(x)) (845, is the differential of
the action of g at py). Thus, if {x,x)>{r* and g Exp,(x) = Exp,(x), then
8xp(X) = x. Now g., preserves <, > at p, Hence, if V, = {xe
T(M)y, | gxp.X = x}, then T(M),, =V, @ V5 and, by the above, Exp, (V,,)
=UNM,ItV, =TM)),, then g Expyx) = Exp,(x) for all X ¢ T(M),,.
Since Exp(T(M),,) = M, g is the identity, and therefore dim ¥V, < dim T(M),,.
Thus Exp,,(V,,) is a submanifold of U of dimension less than n. Hence UNM,
has measure zero relative to any coordinate system. Since M, can be covered
by a finite number of such U, the result follows.

Corollary 2.2. Let M = {xe M|gx + x for any g # e}. Then M — M
has measure zero in M.

Proof. M — M = U, M,.

Let E LA be a C* Hermitian G-vector bundle over M. That is, E is a
complex vector bundle over M. If E, = p~*(x), then there is { , >, an inner
product on E, varying smoothly with x, and G acts on E by diffeomorphisms
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such that gE; C E,., and g: E, — E_, is a linear isometry of the fibres.

Let C=(M ; E) denote the space of C~ cross-sections of E, and let (g - H(x) =
gf(g™'x) for g€ G, f e C*(M, E). Suppose that there is an elliptic operator D:
C=(M; E) — C=(M ; E) so that the following hold :

(1) D@E-H=g-DN.

@ If £ € T, then oD)E) = —& £,
where T(M)* is the cotangent bundle of M, and ¢(D) is the top order symbol
of D, and { , > is a Riemannian structure on M.

(3) If y, is the Riemannian measure on M corresponding to < , >, then

forfi e C*(M E), i = 1,2, defining | <£(), £(0>dpu() = (f, £ we assume

(Df,, f,) = (f, Df,) and (Df, f) > O for f e C=(M ; E).

Actually results similar to the ones we shall derive are true under very much
less stringent conditions than (1), (2), (3).

Let £— R X M be the pull-back bundle pyE = {(t,v)|te R, v ¢ E},
I X p: pfE — R X M the projection, and L = 3/8t + D the evolution oper-
ator associated with D.

Let C*(M; E), = {fe C*(M; E)|Df = if} for xe R. If C~(M ; E), # (0),
ie R, then 2 > 0. Giérding’s inequality (see Palais et. al. [10], F. Warner [3]
or Greenfield and Wallach [7]) implies

Lemma 2.3. Y,..,dim C=(M; E) 274" < oo foralle > 0, d = dim M.

If ¢,f, g€ C°(M; E), then define

_[M (¢ ® &)(x, g(»dy = _[M 8, O du(Mf(x) .

Let EQ E—M X M be the exterior tensor product of E with itself. If

heC(E® E), then j h(x, Y)¢(3)dp(y) makes sense for ¢ ¢ C=(E).
M
For 2eR and 1 >0, let ¢,,,---,9,,, be an orthonormal basis of
C*(M; E), (dim C*(M; E), = n, < = by the elliptic regularity theorem).
Then Lemma 2.3 implies that

% e (56,0 ©4.0)) = K@, xy)
defines a C= cross-section of
PHE ® Epyoyxarxt > Pty x,3) = (x,9)) .

It is well known and easily proved that if ¢ ¢ C*(M; E), then the unique solu-
tion to the Cauchy problem:
(i) Lf=0,
(i) lim f(z, x) = ¢(x)
i50
is given by
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ft, %) = j K, %, 9)90)d0) -

Set Ig(E) equal to the space of all f e C*(M ; E) such that g-f = f for g e G.
If ¢ € Ig(E), then the uniqueness above implies that if Lf = 0 and lim f(z, x) =
t—0
>0
$(x), then g-f(z,g7'-x) = f(,x) for g ¢ G.
Let C=*(M; E); = C>(M; E), N I3(E). Then we may assume that ¢,,,
*+, @, m, form an orthonormal basis of C=(M; E);. Let

Ko(t,x,7) = T e 3 6,0 © 63,0) -

Let (g-1)(1,%) = gf(t,g™*-x) for fe C=(R X M; E) and g G. Let I3(E) be
the fin C=((0, ) X M; E) such that ¢g-f = f for g e G.

Clearly, if (K(£)§)(x) = J'M K(2, x, Y)$()dy, t > 0, then K@) : I2(E) —I2(E).

If (Ke(9)g) = J.M Kq(t, x, y)¢(y)dy for t > 0, then K4(1): C*(M; E) — I2(E).

{f veE, and weE,, then set ERDERW) =gv®w, 1R & ”i) =
VX gw. (@R OW) =gv®hw, g,he G. Hence G X Gactson EQ E.
Clearly

_ 1 -1
KG(t’ x:}’) - —[—G_]‘ g;G (g® I)K(t,g -X,y) ’

where [G] is the number of elements in G.

We also look at x — K(¢, x, x) and x — K4(2, x, x) as a C™ cross-section of
Hom (E, E). Let I be the identity cross-section. The next result is classical, so
we will only sketch its proof.

Lemma 2.4. (a) K(t,x,x) = 4r)~ ¥, + O~ 9" ast —0,t > 0.

(b) Let p be the Riemannian metric corresponding to { , > on M. Then
there are constants C > 0, h > 0 so that

| K@, x, y)|] < Crm2” exp (—ho(x, y)*/1) .

Here the norm is relative to the tensor product Hermitian structure on E QE.

Proof (outline). Let ¢ > 0O be such that

(a) Ezxp,: By(e) = B(p; &) = {x e M|p(x, p) < ¢} is a diffeomorphism for
peM.

(b) E| gy, is a trivial bundle for p e M.

Let p;, - - -, py € M be such that if U; = B(p;;¢/2), U, U --- U Uy =M.
Let W; = B(p;;¢). Let {xi,---,xi} be a corresponding system of normal
coordinates on W,, and ¥; = (xi, - - -, x%) the corresponding chart (¥",(W,) =
{G, x| 23 <é). Let?,: Ely, — W; X C™ be a vector bundle iso-
morphism, and let ¢, - -+, ¢y be a partition of unity for M, supp ¢; C U;.
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Let£; e C*M), 0<&(x) < 1, xe M, supp &, C U, &(x) = 1 for x e supp ¢,.
If feC°(M;E), then F, =T ofo¥ . T, (W) T,(W,) X C™ Fi(x) =
(x, f:(0). T, 0 Df o ¥ = (x, D;f;(x)) where

2 -~
* _tohlotc,

Di = — ai
2 T .

where (ai,(x)) is a positive definite matrix b%, Ct ¢ C*(¥ (W), End(C™)). Let
(@"*¥(x)) = (ai,(x))~*, and set

Zi(t,x,y) = (4xt)"" exp (‘”i? T @)k — e, — y»)

fort > 0.
Define for f e C*(M ; E),

N = 3 &@F(x, [ $OIZL T, FOV0ID) -

Then it is easily seen (see Friedman [2, Theorem 1, p. 4]) that

lim (Z@®ON(x) = f(x)
>0
for xe M. It is also clear that Z(f) has a C= kernel Z(t,x,y). That is,
ZON@ = | 2, % )f0)du0) where Z(,x,) ¢ E. O E,.
If feC™((0, ) X M; E), ge C*(M; E) define LG & 2) = L ® g. Argu-
ing as in Friedman [2, Chapter 1, § 4] we define
Ql(t> x> y) = —LZ(t> x; y) .

Supposing that @, has been defined, set
13
.\, 1, y) = _L L{ LZ(to, x, 9,(0, &, Y)du(E)do .

Then the above arguments of Friedman imply that if @(z, x, y) = i Q. x,y),
v=1

then @ converges uniformly and absolutely on compact subsets of (0, o) X
M % M to a C= cross-section of C=((0, o) X M X M ; P¥(E® E)). Furthermore
we have that there are C > 0, 7 > 0 so that

@ 2@ x, y)| < Ct2" exp (—%»(x, ).

® [0, x, )] < Ct-@*>2 exp (—ﬁtmx, y>2) ,
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(©) [LZ(t, x,y)]| < Ct~@*V/2exp (—%p(x, y)z)

for0 <1< T < x,x,yeM.
Also arguing as in [2, Theorem 8, p. 19] we see

Kt x,y) = Z(t,x,y) + j 0 j 2 = 0,2, 90(0,£,)du(&)do .
Using [2, Lemma 3, p. 15] we see that if
vixy = [ [ 20— 0% 006.69du@4do
then
IV %)) < Cresrexp (= 2o, )

foro<:i<T.

The lemma now follows from the fact that Z(z, x, y) obviously satisfies (1),
(2) of the lemma.

Lemma 2.5. Let for 2¢ R, m, = dimC~*(M; E)} = dim {f e C*(M; E)|

Df = 2f,g-f = f for all g e G}. Let vol (M) = f duy(x). Let m be the fibre
M
dimension of E. If d = dim M, then

x . _m_ vol (M) —as
e T

ast—0,t> 0.
Proof. If f,ge C*(M;E), define tr(f(x) ® g(x)) = {f(x),g(x)>. Then
clearly

S me = f tr (Kot %, 9)dax)
Now

1 1
_ — . _1. h .
Ks(t, x,y) Gl K(t, x,y) + Gl g;e E®1D-K(t,g7"-x,¥)

Thus Lemma 2.4 will imply the lemma if we can show that if g = e then
[ 16 ® DK@, 875 D dutx) = ot-em)

ast— 0,1 > 0.
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Let now g ¢ G — {e} be fixed and ¢ > O be given. Let U be open in M so that
UM, (see Lemma 2.1) and j du(x) < ke CV, C and ¥ to be determined.
[
Let

I = JM (g ® DK, g7'x, x) [dpe(x) = L{ 1 K(2, 87'x, x) [[du(x)

Then
10 = [ 1K@ g% D + [ 1K 8% )l
Now
IK(t, g7, 0) || < Ct™¢ exp (—%p(g-lx’ x)) < Ct ey,
v (= o)
= max exp ——P(x,}’) .
Z,yEM t
<1
Thus

en@ < [ 1K@ e Dldutd + de
Now M — U is compact and M — U C M — M,_,. Hence there is § > 0 so
that if x e M — U then p(g7'x,x) > 4. Applying Lemma 2.4 again we find
that #2J(f) < 4 + Cvol (M)e~#"¢ if ¢t < 1. Take g > O so that e~
2eCvol (M) if 0 <t < g. Then 12/%J(f) < efor 0 <t <. q.e.d.

In the next section we apply these results to 7'\ G.

3. Applications to /'\G

Let G be a semi-simple Lie group with finite center and such that G has no
connected, compact, normal subgroups. Let K C G be a maximal connected,
compact subgroup. Let X = G/K. Let g be the Lie algebra of G, and B the
Killing form of g. Let ¥ C g be the Lie algebra of K, and p the orthogonal
compliment to t in relative to B. Then it is well known that B|,,, is positive
definite. We put the G-invariant Riemannian structure < , > on X; this cor-
responds to making /7, : p — T(X),(II : G — G/K is the natural map, and
II,, is its differential at e € G) an isometry of Bl,,, and { , De.

Let now (z, ¥) be an irreducible unitary representation of K. We form the
G-hermitian vector bundle over X, G (>9< V@ V*) = ¥V where G c>><1 VRV

QI &
is the associated bundle to the principal bundle K — G L X (cf. Kobayashi-
Nomizu [9] or Wallach [12]). Then ¥ is completely described as follows:
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(1) If g is in G, then g induces a linear map ¥, — ¥V, which we denote
¥ — g-v. The corresponding action of G on V is C*.

(2) The representation of K on V,, given by v — k-v, v € V,, is equiva-
lent to (r ® I, V & V*) as a unitary representation.

If feC(X; V), let (g-H(x) = gf(¢g7*-x). Then g-feC>(X; V) for fe
C*(X;V). Let X,,---,X, be a basis of g, and let Y, - - ., Y, be such that

B(X;,Y,;) = ¢;;. Then defining (X-f)(x) = %(exp tX -flexp (—tX)-x)|,_, for

Xegand fe C*(X; V) we set

Quf = iXiYi-f.

Thus Qpg-f = g24f,2¢ G.

A simple computation shows that if & € T(X)*.;, then o(2,)() = <&, &1
Define a G-invariant connection on V by (F,)(ek) = (X -H(ek) for ue
T(G/K)er, u = {1,,(X), X € p. The corresponding connection on V satisfies

XUy =¥, + ¥, Vx> .

Let 2 be the connection Laplacian on V corresponding to the connection 7
and the Riemannian structure on X.

Lemma 3.1. Let Q0 = — >, Y? where Y, ---,Y, form a basis of f so
that B(Y;, Y ;) = —&;;. Let 1. be defined by t(Qg) = I (Schur’s lemma im-
plies this makes sense). If f e C*(X ; V), then

Qvf =V + 2f .
Proof. If feC=(X,V), define f(g) = g~'-f(gk). Then f: G— V,, and
fgk) = k™'f(g) for ke K, ge G. Let (L,@)(x) = ¢(g7x) for ¢: G — V,,
where ¢ is of class C*, and g, x € G. We note thatif A(f) = fforfe C*(X; V)

and we define B(¢)(gk) = g-4(g) for ¢: G — V., then ¢(gk) = k- ¢(g),
keK,geG. Thus B(¢) e C*(X; V) and AB(¢) = ¢, BA() = f.

Let (Rx¢)(g) = %qs(gexth) l:-o for X e g and ¢: G — ¥V, ¢ being of class

C=. Then a direct computation shows that if X, - - -, X, form an orthonormal
basis of p relative to Bi,,, then A(F*) = >.7., R%.A(). Also

A = 3 ReA) — 3 Ry AD)
= i R% A + (Qx)AW) = ATH) + 1AW .

Applying B gives the result.
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Let now I' C G be a discrete subgroup so that I'\G is compact and
gl'g™ N K = {e} for all ge G. Then I acts freely and properly discontinu-
ously on X and ¥. We may thus form £ = I'\V —» '\ X = M.

Since I" acts by isometries on X, we may “push” the Riemannian structure
and volume element on X down to M. The Hermitian structure on ¥ induces
a Hermitian structure on E. Finally 2, and F? are G-invariant operators on
V, and thus the induced second order elliptic operators on E. We still have
Qy =r*+ 21

Set D = —(2y — A1) = —F* Then (Df,f) > 0, D = D* and o(D, &) =
—{§&,&>1. Thus D satisfies (1), (2), (3) of §2.

Let f(g)(k) = f(gk) for fe C*(I'\G). Then f: I'\G — C>(K). Let Cz(K)
be the subspace of C~(K) spanned by the matrix entries of (¢, V). Let y. be

the character of (r, V). Define f.(g) = .[x 1:(&)1.(f(gk)dk for fe C=(I"\G).

Then f.:I'\G — C2(K) and f.(gu)k) = f.(g)(uk). Let CHI'\G) ={fe
C~(I"\D|f. = f}. Let (u(k)g)(x) = ¢(k~'x) for ¢ € C7(K), and k,x e K. We
therefore see thatif f e C2(I'\G), then f: I'\G — C(K) and f(gu) = p(u)~'f(x)
for x,u e K. »

Let 17, be the right regular representation of G on L*(/'\G). That is, if
é ¢ LA(I"\G) then (z (x)¢)(I'g) = ¢(I'gx) for g, x € G. Then it is well known
that 7, = .. Br(@o. G is the set of all equivalence classes of irreducible
unitary representations of G. .

If1eR let G, = {we G|z, (2) = —aI for every =, in the class w}.

Lemma 3.2. Set C*(M; E), = {¢ ¢ C*(M ; E)| D¢ = 2$}. Then

dimC*(M; E); = 2 nr@)-[r: olxld. ,

ry
wEGZ—ZT

d.=dim V = y.(e).

Proof. E can be looked upon as the set of equivalence classes of pairs
x,2),xe I'\G, veV ®V* with (xk, (¢(k) ® )™'v) = (x,v) for k ¢ K. Let
[x, v] denote the equivalence class of (x, v). Let C*(I"\G ; 7) denote the space
ofall g: M'\G—-VRV*, ¢ e C>and ¢(xk) = (z(k)™' ® Dg(x). Define B(¢)(x)
= [x, 3(x)] for ¢ ¢ C=(I"\G; ). Then B defines a bijection of C~(I"'\G; 7)
and C*(M; E). Now as a representation of K, (4, C(K)) is equivalent to
(t®I1,V @V*). Thus we have B~*: C*(M ; E) — C2(I'\G). B™" is bijective
and extends to a bounded bijective operator on the appropriate L*-completions.
Butthen B-(C:(M; E),) = {fe Co(I'\G8f = —(1 — Df}. M fe C2(I\G),
then f = 3 f., f. e no(wH,, (z,, H,) € . Thus £2f = >, 2,f., and the result
now follows.

Suppose now that /7, C G is an arbitrary discrete subgroup so that 7",\G
is compact. Then there is a normal subgroup I” of I, so that I” acts freely and
properly discontinuously on X, and if H = I",\I" then H is a finite group of
isometries of 1"\ X (cf. Raghunathan [11]).
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Now E — M = I'\X is an H-vector bundle, since E is the associated bundle
to '\G — I''\X and H acts on the left on I'\G. Let Z(I") = I'; N Z(G),
where Z(G) is the center of G. We note that since Z(G) C K, Z(I") C K.
Also, if z € Z(G) then =z(z) = £.(2)1, &.: Z(G) — T" being a character. Thus, if
reZ() and & = yI', then h-v = §.(y)v for v ¢ E. We therefore see that
C*(M;EY={feC°(M;E);\h-f =f, he H} % Oonly if tlz,, = 1.

We assume that ¢z, = I. Arguing as above we find

Lemma 3.3. dim C*(M; E); = >, .c4,_, nr(0)lz: w|xld,, where II, =
> nr(wo, and I, is the right regular representation of G on LX(I",\G).

Now H does not necessarily act effectivelyon I'\X. Let H,={he H{hlx =
I'x for all x € X}. Then, as is easily seen, H, is the image of Z(/") in H.
Since Z(I')) N'I" = (e), we see that [H,] = [Z(7')]. Finally E is an H/H,
vector bundle if and only if H, acts trivially on the fibres of E, that is, if and
only if r ¢ K, (see the introduction for the definition of K, ).

Combining the above observations with Lemma 3.3 and Lemma 2.5 we see

2t 2t . _ [ZT)] s
o e E:?; etn, (wydlz: vlg] = ——————[FI\F] t=22 vol (M)d?

+ o(t~97%) aSZ—>0, t>0.

Normalize Haar measure dg on G so that if X, - - -, X, form a basis of g
so that —B(X,, 6X,) = §;; 0|, = 1,6|, = —1I), thendg(X,, ---,X,) = 1. Let
C;* be the volume of K relative to the Riemannian volume element on K cor-
responding to the inner product — B,,,. Then

vol I",\G) = [I",/T'1*-vol (I'\G) = [I,/I"1"'C5* vol (I'\ X) .

Hence C; vol ((M\G) = [[,/I']!-vol (I"\X). These observations combined
with (1) above prove

Theorem 3.4. There is a constant Cs depending only on G so that if I is
a discrete subgroup of G with I'\G compact and if ¢ ¢ K., then

2 np(@lx: wlgle = Cod 2D w01 (1\G) + ooy ,

we " (4m)er
ast—0, t>0.

We also note that Lemma 2.3 combined with Lemmas 3.2 and 3.3 imme-
diately imply Theorem 1.2 of the introduction.
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